
TOWARDS ACCESSIBLE REAL-TIME
DISTRIBUTED EMBEDDED VISION
MIDDLEWARE

Cheng-Yao Chen, Jason Schlessman, Wayne Wolf
Embedded System Group

Department of Electrical Engineering
Princeton University

ACM Workshop on Foundations and Applications of Component-Based Design, Oct. 26th 2006



INTRODUCTION

Visual computing with multiple video sensors can 
achieve a higher degree of robustness and 
reliability
A peer-to-peer fashion of communication can be 
more efficient with respect to computation and 
communication
However, peer-to-peer vision systems have unique 
communication patterns and requirements 
compared to other types of sensor networks
Moreover, strict deadline requirements for real-time 
vision system further complicate the design
Without careful evaluation of system resource 
constraints, the entire system could prove 
disastrous



Research Goal

Most computer vision researchers focus on 
developing algorithms to perform the task 
on a single sensor
Little or no consideration is given to 
distributed networks of cameras
To provide a design tool in the form of 
layered middleware to assist in distributed 
computer vision system development is 
insightful



SYSTEM SCENARIOS

Each camera is communicating 
with other overlapped cameras for 
objects within their overlapped 
areas

Green: not busy – the camera has 
plenty of room for extra 
computation made by other 
cameras’ requests



Decision SITUATION
Connection to extremely busy 
camera should be temporarily 
disabled to preserve system 
reliability

Connection to somewhat busy 
camera can be either on or off 
depending on users’ preferences

Green: not busy – the camera 
have plenty of room for extra 
computation made by other 
cameras’ requests

Red: extremely busy – no room for 
extra computation

Yellow: somewhat busy – can 
process requests under certain 
circumstances?



MIDDLEWARE OVERVIEW

Target peer-to-peer multiple object tracking 
system
Small clusters of processing nodes could be 
made manifest within the system in a 
hierarchical fashion
The decision criteria are described by six 
models, including, alternative model, system 
specification model, priority model, system 
failure model, error correction model, and 
resource constraint model



ALTERNATIVE MODEL

Defines the network configuration 
alternatives at run time
In the multiple camera system, it usually 
refers to the cameras with which a given 
node need to communicate
Each tracked object can also be descried by 
a set of overlapped sensors
Object label coherence should be preserved 
within the overlapped sensor set 



SYSTEM SPECIFICATION MODEL

Describes each 
software and hardware 
component within the 
network system
It could include 
descriptions of 
processor speed, 
memory size, and 
state machine of vision 
software task An example of software 

components of a vision system



PRIORITY MODEL

Characterizes performance priorities 
as specified by the system user
Vision-precision oriented – every node 
to try to talk to every other overlapped 
node if possible
Power-efficiency oriented – where 
communication between nodes is 
minimized with correct functions



SYSTEM FAILURE MODEL

Three types of failures to characterize different 
faulty situations
Parameter failures – due to inappropriate 
thresholds or random noises
Vision failures – refer to internal algorithm 
limitations
Communication failures – refer to errors result 
arising from a lack of or incorrect communication 
decisions
Network link failure are not addressed since this 
class of failure can typically be alleviated by existing 
lower layer of network middleware



ERROR CORRECTION MODEL

Methods of failure recovery or 
correction for the system
Vision systems can recover from either 
using extra communications or history 
updates
Cost varies among different methods 
and preferences are determined by the 
user



RESOURCE CONSTRAINT MODEL

Describes the system resource 
constraints
Typical examples – power 
consumption, processing thread 
limitations, process deadline 
requirements, and communication 
bandwidth boundaries



PRELIMINARY PROGRESS

An activity model of characterizing higher 
level vision tracking activities in terms of 
lower level system computation and 
communication states
Model the camera states by Markov Chain
Predict the transition of states (e.g. not busy 
to busy) and make corresponding changes 
(e.g. temporarily break the link)
Provide certain operation modes to manage 
different situations 



EXPERIMENT RESULTS

Less than 5% prediction error can 
achieved when communicating 30 
frame/second
System failure rate with our proposed 
model can be reduced to at least lower 
than 1/3 of the original failure rate



DISCUSSION

A 100% prediction is difficult to 
achieve while the vision activity is 
complicated
Time to collect necessary information 
and to calculate the operation mode 
can be the bottleneck of real-time 
processing



CONCLUSION

A middleware that bridge higher level vision 
activities and lower level system 
specifications is proposed
With this layered middleware, system 
reliability and efficiency are enhanced
Users can also decide the configuration by 
their preferences
A more accurate model needs to be 
explored for complex vision applications


	TOWARDS ACCESSIBLE REAL-TIME DISTRIBUTED EMBEDDED VISION MIDDLEWARE
	INTRODUCTION
	Research Goal
	SYSTEM SCENARIOS
	Decision SITUATION
	MIDDLEWARE OVERVIEW
	ALTERNATIVE MODEL
	SYSTEM SPECIFICATION MODEL
	PRIORITY MODEL
	SYSTEM FAILURE MODEL
	ERROR CORRECTION MODEL
	RESOURCE CONSTRAINT MODEL
	PRELIMINARY PROGRESS
	EXPERIMENT RESULTS
	DISCUSSION
	CONCLUSION

